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Abstract. The large basis spreads observed on the interest rate mar-
ket since the liquidity crisis of summer 2007 imply that different yield
curves are required for market coherent estimation of forward rates with
different tenors (e.g. Euribor 3 months, Euribor 6 months, etc.).

In this paper we review the methodology for bootstrapping multi-
ple interest rate yield curves, each homogeneous in the underlying rate
tenor, from non-homogeneous plain vanilla instruments quoted on the
market, such as Deposits, Forward Rate Agreements, Futures, Swaps,
and Basis Swaps. The approach includes turn of year effects and is ro-
bust to deliver smooth yield curves and to ensure non-negative rates
also in highly stressed market situations, characterized by crazy roller
coaster shapes of the market quotations.

The concrete EUR market case is analyzed in detail, using the open
source QuantLib implementation of the proposed algorithms.

1. Introduction

Pricing complex interest rate derivatives requires modeling the future dy-
namics of the yield curve term structure. Most of the literature assumes
the existence of the current yield curve as given, and its construction is
often neglected, or even obscured, as it is considered more an art than a sci-
ence. Actually any yield curve term structure modeling approach will fail to
produce good/reasonable prices if the current term structure is not correct.

Financial institutions, software houses and practitioners have developed
their own proprietary methodologies in order to extract the yield curve term
structure from quoted prices of a finite number of liquid market instruments.
“Best-fit” algorithms assume a smooth functional form for the term structure
and calibrate its parameters such that to minimize the repricing error of the
chosen set of calibration instruments. For instance, the European Central
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Bank publishes yield curves on the basis of the Soderlind and Svensson
model [1], which is an extension of the Nelson-Siegel model (see e.g. refs.
[2], [3] and [4]). Such approach is popular due to the smoothness of the
curve, calibration easiness, intuitive financial interpretation of functional
form parameters (level, slope, curvature) and correspondence with principal
component analysis. On the other side, the fit quality is typically not good
enough for trading purposes in liquid markets.

In practice “exact-fit” algorithms are often preferred: they fix the yield
curve on a time grid of N points (pillars) in order to exactly reprice N
pre-selected market instruments. The implementation of such algorithms is
often incremental, extending the yield curve step-by-step with the increas-
ing maturity of the ordered instruments, in a so called “bootstrap”approach.
Intermediate yield curve values are obtained by interpolation on the boot-
strapping grid. Here different interpolation algorithms are available but little
attention has been devoted in the literature to the fact that interpolation is
often already used during bootstrapping, not just after that, and that the
interaction between bootstrapping and interpolation can be subtle if not
nasty (see e.g. [5], [6]).

Whilst naive algorithms may fail to deal with market subtleties such as
date conventions, the intra-day fixing of the first floating payment of a Swap,
the turn-of-year effect, the Futures convexity adjustment, etc., even very
sophisticated algorithms used in a naive way may fail to estimate correct
forward Euribor rates in difficult market conditions, as those observed since
the summer of 2007 in occasion of the so-called subprime credit crunch crisis.
Namely using just one single curve is not enough to account for forward rates
of different tenor, such as 1, 3, 6, 12 months, because of the large Basis Swap
spreads presently quoted on the market.

The plan of the paper is as follows: in section 2 we start by reviewing the
traditional (old style) single curve market practice for pricing and hedging
interest rate derivatives and the recent market evolution, triggered by the
credit crunch crisis, towards a double-curve approach. In section 3 we fix the
notation and nomenclature. In section 4 we briefly summarize the traditional
pre-credit crunch yield curve construction methodology.

In section 5, that constitutes the central contribution of this work, we
describe in great detail the new post-credit crunch multi-curve approach;
in particular in its nine subsections we discuss the general features of the
bootstrapping procedure, we review in detail the (EUR) market instruments
available for yield curves construction, and we deal with some issues crucial
for bootstrapping, in particular the fundamental role played by the interpo-
lation scheme adopted (sec. 5.8) and the incorporation of the turn-of-year
effect (5.9). Finally, in section 6 we show an example of numerical results for
the Euribor1M, 3M, 6M and 12M forward curves bootstrapping using the
open source implementation released within the QuantLib framework. The
conclusions are collected in section 7.
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2. Pre and Post Credit Crunch Pricing & Hedging Interest
Rate Derivatives

One of the many consequences of the credit and liquidity crisis started
in the second half of 2007 has been a strong increase of the basis spreads
quoted on the market between single-currency interest rate instruments,
Swaps in particular, characterized by different underlying rate tenors (e.g.
Euribor3M1, Euribor6M, etc.), reflecting the increased liquidity risk and
the corresponding preference of financial institutions for receiving payments
with higher frequency (quarterly instead of semi-annualy, for instance).

There are also other indicators of regime changes in the interest rate
markets, such as the divergence between Deposit (Euribor based) and OIS
(Overnight Indexed Swaps, Eonia2 based) rates with the same maturity, or
between FRA (Forward Rate Agreement) contacts and the corresponding
forward rates implied by consecutive Deposits. We stress that such situation
is not completely new on the market: non-zero basis swap spreads were
already quoted and understood before the crisis (see e.g. ref. [7]), but their
magnitude was very small and traditionally neglected (see also the discussion
in refs. [8], [9]).

The asymmetries cited above have also induced a sort of ”segmenta-
tion” of the interest rate market into sub-areas, mainly corresponding to
instruments with 1M, 3M, 6M, 12M underlying rate tenors, characterized,
in principle, by different internal dynamics, liquidity and credit risk premia,
reflecting the different views and interests of the market players.

The evolution of the financial markets briefly described above has trig-
gered a general reflection about the methodology used to price and hedge
interest rate derivatives, namely those financial instruments whose price de-
pends on the present value of future interest rate-linked cashflows, that we
review in the next two sections.

2.1. The Traditional Single Curve Approach. The pre-crisis standard
market practice can be summarized in the following procedure (see e.g. refs.
[10], [5], [11] [6]):

(1) select one finite set of the most convenient (e.g. liquid) vanilla in-
terest rate instruments traded in real time on the market with in-
creasing maturities; for instance, a very common choice in the EUR
market is a combination of short-term EUR Deposit, medium-term
Futures on Euribor3M and medium-long-term Swaps on Euribor6M;

(2) build one yield curve using the selected instruments plus a set of
bootstrapping rules (e.g. pillars, priorities, interpolation, etc.);

1Euro Interbank Offered Rate, the rate at which euro interbank term Deposits
within the euro zone are offered by one prime bank to another prime bank (see e.g.
www.euribor.org).

2Euro OverNight Index Average, the rate computed as a weighted average of all
overnight rates corresponding to unsecured lending transactions in the euro-zone inter-
bank market (see e.g. http://www.euribor.org).
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(3) compute on the same curve forward rates, cashflows3, discount fac-
tors and work out the prices by summing up the discounted cash-
flows;

(4) compute the delta sensitivity and hedge the resulting delta risk using
the suggested amounts (hedge ratios) of the same set of vanillas.

For instance, a 5.5Y maturity EUR floating Swap leg on Euribor1M (not
directly quoted on the market) is commonly priced using discount factors
and forward rates calculated on the same Depo-Futures-Swap curve cited
above. The corresponding delta sensitivity is calculated by shocking one
by one the curve pillars and the resulting delta risk is hedged using the
suggested amounts (hedge ratios) of 5Y and 6Y Euribor6M Swaps4.

We stress that this is a single-currency-single-curve approach, in that a
unique curve is built and used to price and hedge any interest rate deriva-
tive on a given currency. Thinking in terms of more fundamental variables,
e.g. the short rate, this is equivalent to assume that there exist a unique
fundamental underlying short rate process able to model and explain the
whole term structure of interest rates of any tenor.

It is also a relative pricing approach, because both the price and the
hedge of a derivative are calculated relatively to a set of vanillas quoted on
the market. We notice also that the procedure is not strictly guaranteed to be
arbitrage-free, because discount factors and forward rates obtained through
interpolation are, in general, not necessarily consistent with the no arbitrage
condition; in practice bid-ask spreads and transaction costs virtually hide
any arbitrage possibility.

Finally, we stress that the first key point in the procedure above is much
more a matter of art than of science, because there is not an unique finan-
cially sound choice of bootstrapping instruments and, in principle, none is
better than the others.

The pricing & hedging methodology described above can be extended,
in principle, to more complicated cases, in particular when a model of the
underlying interest rate evolution is used to calculate the future dynamic of
the yield curve and the expected cashflows. The volatility and (eventually)
correlation dependence carried by the model implies, in principle, the boot-
strapping of a variance/covariance matrix (two or even three dimensional)
and hedging the corresponding sensitivities (vega and rho) using volatility
and correlation dependent vanilla market instruments. In practice just a
small subset of such quotations is available, and thus only some portions of
the variance/covariance matrix can be extracted from the market. In this
paper we will focus only on the basic matter of yield curves and leave out
the volatility/correlation dimensions.

3within the present context of interest rate derivatives we focus in particular on forward
rate dependent cashflows.

4we refer here to the case of local yield curve bootstrapping methods, for which there
are no sensitivity delocalization effect (see refs. [5], [11] [6]).
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2.2. The New Multi-Curve Approach. Unfortunately, the pre-crisis ap-
proach outlined above is no longer consistent, at least in this simple formu-
lation, with the present market configuration.

First, it does not take into account the market information carried by
the Basis Swap spreads, now much larger than in the past and no longer
negligible.

Second, it does not take into account that the interest rate market is
segmented into sub-areas corresponding to instruments with different un-
derlying rate tenors, characterized, in principle, by different dynamics (e.g.
short rate processes). Thus, pricing and hedging an interest rate derivative
on a single yield curve mixing different underlying rate tenors can lead to
“dirty” results, incorporating the different dynamics, and eventually the in-
consistencies, of different market areas, making prices and hedge ratios less
stable and more difficult to interpret. On the other side, the more the vanillas
and the derivative share the same homogeneous underlying rate, the better
should be the relative pricing and the hedging.

Third, by no arbitrage, discounting must be unique: two identical future
cashflows of whatever origin must display the same present value; hence we
need an unique discounting curve.

The market practice has thus evolved to take into account the new mar-
ket informations cited above, that translate into the additional requirement
of homogeneity : as far as possible, interest rate derivatives with a given
underlying rate tenor should be priced and hedged using vanilla interest
rate market instruments with the same underlying. We summarize here the
following modified working procedure:

(1) build one discounting curve using the preferred procedure;
(2) select multiple separated sets of vanilla interest rate instruments

traded in real time on the market with increasing maturities, each
set homogeneous in the underlying rate (typically with 1M, 3M, 6M,
12M tenors);

(3) build multiple separated forwarding curves using the selected instru-
ments plus their bootstrapping rules;

(4) compute on each forwarding curve the forward rates and the cor-
responding cashflows relevant for pricing derivatives on the same
underlying;

(5) compute the corresponding discount factors using the discounting
curve and work out prices by summing up the discounted cashflows;

(6) compute the delta sensitivity and hedge the resulting delta risk using
the suggested amounts (hedge ratios) of the corresponding set of
vanillas.

For instance, the 5.5Y floating Swap leg cited in the previous section
should be priced using Euribor1M forward rates calculated on an “pure”
1M forwarding curve, bootstrapped only on Euribor1M vanillas, plus dis-
count factors calculated on the discounting curve. The corresponding delta
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sensitivity should be calculated by shocking one by one the pillars of both
yield curves, and the resulting delta risk hedged using the suggested amounts
(hedge ratios) of 5Y and 6Y Euribor1M Swaps plus the suggested amounts
of 5Y and 6Y instruments from the discounting curve.

The improved approach described above is more consistent with the present
market situation, but - there is no free lunch - it does demand much more
additional efforts. First, the discounting curve clearly plays a special and
fundamental role, and must be built with particular care. This “pre-crisis”
obvious step has become, in the present market situation, a very subtle and
controversial point, that would require a whole paper in itself (see e.g. ref.
[12]. In fact, while the forwarding curves construction is driven by the un-
derlying rate tenor homogeneity principle, for which there is (now) a general
market consensus, there is no longer general consensus for the discounting
curve construction. At least two different practices can be encountered on
the market: a) the old “pre-crisis” approach (e.g. the Depo, Futures and
Swap curve cited before), that can be justified with the principle of maxi-
mum liquidity (plus a little of inertia), and b) the Eonia curve, justified with
no risky or collateralized counterparties, and by increasing liquidity (see e.g.
the discussion in ref. [13]). Second, building multiple curves requires mul-
tiple quotations: much more interest rate bootstrapping instruments must
be considered (Deposits, Futures, Swaps, Basis Swaps, FRAs, etc.), which
are available on the market with different degrees of liquidity and can dis-
play transitory inconsistencies. Third, non trivial interpolation algorithms
are crucial to produce smooth forward curves (see e.g. refs. [6], [11]). Fourth,
multiple bootstrapping instruments implies multiple sensitivities, so hedging
becomes more complicated. Last but not least, pricing libraries, platforms,
reports, etc. must be extended, configured, tested and released to manage
multiple and separated yield curves for forwarding and discounting, not a
trivial task for quants, developers and IT people.

3. Fixing Notation and Nomenclature

In this section we fix notation and nomenclature for the multi-curve en-
vironment. Following the discussion of section 2 (see also refs. [14], [9]), we
start by postulating the existence of N distinct yield curves Cx in the form
of a continuous term structure of discount factors,

CP
x = {T −→ Px (t0, T ) , T ≥ t0} , (1)

where the superscript P stands for discount curve, t0 is the reference date
(e.g. today, or spot date), and Px (t, T ) denotes the price at time t ≥ t0
of the CP

x -zero coupon bond for maturity T , such that Px (T, T ) = 1. The
index x will take the values corresponding to the underlying rate tenors, e.g.
x = {1M, 3M, 6M, 12M}.

Time intervals between couples of dates [T1, T2] are measured as year
fractions with a given day count convention dcx, τ (T1, T2; dcx).
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We also define continuously compounded zero coupon rates zx(t0, T ) and
simply compounded instantaneous forward rates5 fx(t0, T ) such that

Px(t0, T ) = exp [−zx (t0, T ) τC (t0, T )] = exp
[
−

∫ T

t0

fx (t0, u) du

]
, (2)

or, using the equivalent log notation,

log Px(t0, T ) = −zx (t0, T ) τC (t0, T ) = −
∫ T

t0

fx (t0, u) du, (3)

where
τC (T1, T2) := τ (T1, T2; dcC) (4)

and dcC is the day count convention for the zero rate. From the relationships
above it is immediate to observe that:

• zx (t0, T ) is the average of fx (t0, u) over [t0, T ];
• if rates are non-negative6, (log) P (t0, T ) is a monotone non-increasing

function of T such that 0 < P (t0, T ) ≤ 1 ∀T > t0.
• the instantaneous forward curve Cf

x is the most severe indicator of
yield curve smoothness, since anything else is obtained through its
integration, therefore being smoother by construction. We will dis-
cuss this point in section 5.8.

Eq. (2) or (3) allows to define other two rate curves associated to CP
x ,

precisely a zero curve and an instantaneous forward rate curve,

Cz
x = {T −→ zx (t0, T ) , T ≥ t0} , (5)

Cf
x = {T −→ fx (t0, T ) , T ≥ t0} , (6)

where

zx (t0, T ) = − 1
τC (t0, T )

log Px(t0, t), (7)

fx (t0, T ) = − ∂

∂t
log Px(t0, t)|t=T

= zx (t0, T ) +
∂

∂t
zx (t0, t) |t=T τC (t0, T ) , (8)

respectively. In the following we will denote with Cx the generic curve and
we will specify the particular typology (discount, zero or forward curve) if
necessary.

The usual no arbitrage relation among discount factors holds,

Px (t, T2) = Px (t, T1)× Px (t, T1, T2) , ∀ t0 ≤ t ≤ T1 < T2, (9)

where Px (t, T1, T2) denotes the forward discount factor from time T2 to time
T1, prevailing at any time t ≥ t0. The financial meaning of expression (9) is

5par rates could be used too; we do not use them here as they are not frequently used
and would not provide additional benefit anyway.

6this is generally true in all western markets and in the EUR market we consider in
this paper
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that, given a cashflow of one unit of currency at time T2, its corresponding
value at time t < T2 must be the same both if we discount in one single
step from T2 to t, using the discount factor Px (t, T2), and if we discount in
two steps, first from T2 to T1, using the forward discount Px (t, T1, T2) and
then from T1 to t, using Px (t, T1). Denoting with Fx (t; T1, T2) the simple
compounded annual forward rate associated to Px (t, T1, T2), resetting at
time T1 and covering the time interval [T1, T2] with day count convention
dcF , we have

Px (t, T1, T2) =
Px (t, T2)
Px (t, T1)

=
1

1 + Fx (t; T1, T2) τF (T1, T2)
, (10)

where we have defined

τF (T1, T2) := τ (T1, T2; dcF ) . (11)

From eq. (9) we obtain the familiar no arbitrage expression

Fx (t; T1, T2) =
1

τF (T1, T2)

[
1

Px (t, T1, T2)
− 1

]

=
Px (t, T1)− Px (t, T2)
τF (T1, T2) Px (t, T2)

. (12)

Regarding swap rates, given two increasing dates vectors T = {T0, ..., Tn},
S = {S0, ..., Sm}, Tn = Sm > T0 = S0 ≥ t0, and an interest rate Swap with
a floating leg paying at times Sj , j = 1, ..,m, the Euribor rate with tenor
[Sj−1, Sj ] fixed at time Sj−1, plus a fixed leg paying a fixed rate at times Ti,
i = 1, .., n, the corresponding simple compounded fair swap rate on curve
Cx with day count convention dcS is given by

Sx (t,T,S) =

m∑
j=1

Px (t, Sj) τF (Sj−1, Sj) Fx (t; Sj−1, Sj)

Ax (t,T)

=
Px (t, T0)− Px (t, Tn)

Ax (t,T)
, t0 ≤ t ≤ T0 (13)

where

Ax (t,T) =
n∑

i=1

Px (t, Ti) τS (Ti−1, Ti) (14)

is the annuity on curve Cx and we have defined

τS (Ti−1, Ti) := τ (Ti−1, Ti; dcS) . (15)

Notice that on the r.h.s. of eq. (13) we have used the definition of forward
rate from eq. (12) and the telescopic property of the summation. Actually
the telescopic property would hold exactly only if the forward rates end dates
equal the next forward rate start dates, with no periods gaps or overlaps.
This is not true in general, because start and end dates are adjusted with
their business day convention, and the resulting periods do not concatenate
exactly. Typically, such date mismatch does not exceed one business day
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(which sometimes can be three calendar days). In practice, on one hand the
error is small, of the order of 0.1 basis points, on the other hand nothing
prevents using the correct dates and accrual periods, as we have done in this
paper.

4. Bootstrapping Single Yield Curves

A summary of the standard bootstrapping methodology is given in com-
mon textbooks as, for instance, [15] and [16]. The so-called interbank curve
was usually bootstrapped using a selection from the following market in-
struments:

(1) interest rate Deposit contracts, covering the window from today up
to 1Y;

(2) Forward Rate Agreement contracts (FRAs), covering the window
from 1M up to 2Y;

(3) short term interest rate Futures contracts, covering the window from
spot/3M (depending on the current calendar date) up to 2Y and
more;

(4) interest rate Swap contracts, covering the window from 2Y-3Y up to
60Y.

The main characteristics of the instruments set above are:
• they are not homogeneous, admitting underlying interest rates with

mixed tenors:
• the four blocks overlap by maturity and requires further selection.

The selection was generally done according to the principle of maximum liq-
uidity: Futures with short expiries are the most liquid, so they was generally
preferred with respect to overlapping Deposits, FRA and short term Swaps.
For longer expiries Futures are not as liquid, so Swaps were used.

We do not discuss further the traditional single curve bootstrapping method-
ology as it is, more or less, history and it can be also viewed as a particular
case of the multi-curve approach described in the next section.

5. Bootstrapping Multiple Yield Curves

5.1. General Settings. An yield curve is a complex object that results
from many different choices. We collect here the complete set of features
that concur to shape an yield curve and we explicit our choices. We refer in
particular to the EUR market case.

Typology: we have different types of yield curves, e.g. the discount
curve CP

x , the zero coupon curve Cz
x and the instantaneous forward

rate curve Cf
x , as defined in section 3.

Zero coupon rates: since the discount curve is observed to be expo-
nentially decreasing, as expected when the interest rate compound-
ing is made so frequent to be practically continuous, the zero rates
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compounding rule is chosen to be continuous, as in eq. (2). The asso-
ciated year fraction dcC in eq. (4) must be monotonically increasing
with increasing time intervals (non increasing convention would lead
to spurious null forward rates), and additive, such that

τC (T1, T2) + τC (T2, T3) = τC (T1, T3) . (16)

The day count convention satisfying the above conditions that will
be used in this paper is the common dcC = actual/365(fixed) [17],
such that:

τC (T1, T2) := τ [T1, T2; actual/365(fixed)] =
T2 − T1

365
. (17)

Forward rates: they are chosen to be simply compounded as in eqs.
(2) and (12). The associated year fraction in eq. 11 is, for Euribor
rates considered in this paper, dcF = actual/360 [17] such that

τF (T1, T2) := τ [T1, T2; actual/360(fixed)] =
T2 − T1

360
. (18)

Reference date: parameter t0 specifying the reference date of the
yield curve, such that Px (t0, t0) = 1. It can be, for instance, today,
or spot (which in the EUR market is two business days after today
according to the chosen calendar) or, in principle, any business day
after today. The bootstrapping procedure described in the following
sections refers to t0 = spot date, which is the reference date for
all the EUR market bootstrapping instruments except ON and TN
Deposit contracts (see section 5.3). Once the yield curve at spot date
is available, the corresponding yield curve at today can be obtained
using the discount between these two dates implied by ON and TN
depos.

Time grid: the time grid of the yield curve is the predetermined vec-
tor of dates, also named pillars, or knots, for which the bootstrapping
procedure returns a value. It is defined by the set of maturities as-
sociated to the selected bootstrapping instruments. We will consider
bootstrapping time grids from today up to 60Y. The first point in
the time grid is the reference date t0 of the grid. While it makes
perfectly sense to consider the first point

(
t0, Px(t0, t0) = 1

)
for the

discount curve CP
x , the corresponding choices for

(
t0, zx (t0, t0)

)
and(

t0, fx (t0, t0)
)

for the zero curve Cz
x and the forward curve Cf

x , re-
spectively, are less significant and to some extent arbitrary, being
just limits for shrinking T → t0, and as such must be handled with
care.

Bootstrapping instruments: the instruments, quoted on the mar-
ket, chosen as input for the bootstrapping procedure. An accurate
selection of bootstrapping instruments homogeneous in the under-
lying rate tenor and of priority rules is crucial for the multi-curve
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construction methodology described here. We will discuss them in
detail in section 5.2.

Best fit vs exact fit: as discussed in the introduction, best fit and
exact fit algorithms can be used to bootstrap an yield curve. We will
adopt an exact fit algorithm because it ensures exact repricing of the
input bootstrapping instruments.

Interpolation: parameter specifying the particular interpolation al-
gorithm to be used for calculating the yield curve outside the time
grid points. Notice that interpolation is used not only after the yield
curve construction, but also during the bootstrapping procedure
when in between values are necessary to calculate the next pillar
value. In principle, we can interpolate on discounts, zero rates, or
log discounts (equivalent to zero rates per year fraction). Being (log)
P (t0, T ) a monotone non-increasing function of T (see section 3), it
is reasonable to interpolate on a (log-)discount grid using an appro-
priate algorithm that preserves monotonicity. We will discuss this
topic in section 5.8.

Currency: parameter specifying the reference currency of the yield
curve, corresponding to the currency of the bootstrapping instru-
ments.

Calendar: parameter specifying the calendar used to determine holi-
days and business days. In the EUR market the standard TARGET7

calendar is used.
Side: parameter specifying the bid, mid or ask price chosen for the

market instruments, if quoted.

5.2. Market Instrument Selection. As mentioned in section 2, in the
present market situation, distinct interest rate market areas, relative to dif-
ferent underlying rate tenors, are characterized by different internal dynam-
ics, liquidity and credit risk premia, reflecting the different views and inter-
ests of the market players. Such more complex market mechanic generates
the following features:

• similar market instruments insisting on different underlyings, for in-
stance FRAs or Swaps on Euribor3M and Euribor6M, may display
very different price levels;

• similar market instruments may display very different relative liq-
uidities;

• even small idiosyncracies, asynchronism and inconsistencies in mar-
ket quotations may result in erratic forward rates.

Hence, the first step for multiple yield curve construction is a very careful
selection of the corresponding multiple sets of bootstrapping instruments.
Different kinds of instruments can be selected for bootstrapping an yield
curve term structure, and whilst they roughly cover different maturities,

7Trans-european Automated Real-time Gross settlement Express Transfer.
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they overlap in significant areas. Therefore it is usually impossible to include
all the available instruments, and the subset of the mostly non-overlapping
contracts is selected, with preference given to more liquid ones with a tighter
bid/ask spread. The mispricing level of the excluded instruments must thus
be monitored as safety check (or cheap-rich analysis).

In the following subsections we examine these instruments in detail. In
order to fix the data set once for all, we thoroughly refer to the EUR market
quotes observed on the Reuters platform as of 16 Feb. 2009, close time
(around 16.30 CET8. Obviously the discussion holds for other EUR market
data sets and can be remapped to other major currencies with small changes.

5.3. Deposits. Interest rate Deposits (Depos) are Over-The-Counter (OTC)
zero coupon contracts that start at reference date t0 (today or spot), span
the length corresponding to their maturity, and pay the interest accrued
over the period with a given rate fixed at t0.

The EUR market quotes standard plain vanilla Deposits strip that start
at spot date and span various periods up to 1 year. Exceptions are the
first over-night (ON) and the second tomorrow-next (TN) one-day contracts,
which start today and tomorrow, respectively, and span one day each, cover-
ing (without overlapping) the two business days interval between today and
spot dates. The maturity date of Deposits shorter than one month obeys
the following convention; for longer Deposits the convention is modified fol-
lowing. For the latters the end-of-month convention is also respected: if the
start date is the last working day in a given month, the end date must be
the last working date of the ending month too. In fig. 1 we report the EUR
Depo strip quoted in Reuters page KLIEM.

Market Deposits can be selected as bootstrapping instruments for the
construction of the short term structure section of the discount curves. No-
tice that, apart ON, TN and SN, each Depo admits its own underlying rate
tenor, corresponding to its maturity. Hence each Depo should be selected,
in principle, for the construction of a different curve.

If RDepo
x (t0, Ti) is the quoted rate (annual, simply compounded) associ-

ated to the i-th Deposit with maturity Ti and underlying rate tenor x =
Ti− t0 months, the implied discount factor at time Ti is given by the follow-
ing relation9

Px(t0, Ti) =
1

1 + RDepo
x (t0, Ti) τF (t0, Ti)

, t0 < Ti, (19)

where τF is given by eq. (11). The expression (19) above can be used to
bootstrap the yield curve Cx at point Ti.

8Central European Time, equal to Greenwich Mean Time (GMT) plus 1 hour
9here we keep the subscript x explicit also in order to to be consistent with the following

eq. (21).



BOOTSTRAPPING THE ILLIQUIDITY 13Instrument Quote Underlying Start Date Maturity Settlement rule Business Day Conv. End of MonthOND 1.200 Euribor1D  Mon 16 Feb 2009  Tue 17 Feb 2009 Today Following FalseTND 1.200 Euribor1D  Tue 17 Feb 2009  Wed 18 Feb 2009 Tomorrow Following FalseSND 1.200 Euribor1D  Wed 18 Feb 2009  Thu 19 Feb 2009 Spot Following FalseSWD 1.450 Euribor1W  Wed 18 Feb 2009  Wed 25 Feb 2009 Spot Following False2WD 1.550 Euribor2W  Wed 18 Feb 2009  Wed 04 Mar 2009 Spot Following False3WD 1.600 Euribor3W  Wed 18 Feb 2009  Wed 11 Mar 2009 Spot Following False1MD 1.660 Euribor1M  Wed 18 Feb 2009  Wed 18 Mar 2009 Spot Mod. Follow. True2MD 1.850 Euribor2M  Wed 18 Feb 2009  Mon 20 Apr 2009 Spot Mod. Follow. True3MD 1.980 Euribor3M  Wed 18 Feb 2009  Mon 18 May 2009 Spot Mod. Follow. True4MD 2.000 Euribor4M  Wed 18 Feb 2009  Thu 18 Jun 2009 Spot Mod. Follow. True5MD 2.020 Euribor5M  Wed 18 Feb 2009  Mon 20 Jul 2009 Spot Mod. Follow. True6MD 2.050 Euribor6M  Wed 18 Feb 2009  Tue 18 Aug 2009 Spot Mod. Follow. True7MD 2.080 Euribor7M  Wed 18 Feb 2009  Fri 18 Sep 2009 Spot Mod. Follow. True8MD 2.090 Euribor8M  Wed 18 Feb 2009  Mon 19 Oct 2009 Spot Mod. Follow. True9MD 2.110 Euribor9M  Wed 18 Feb 2009  Wed 18 Nov 2009 Spot Mod. Follow. True10MD 2.130 Euribor10M  Wed 18 Feb 2009  Fri 18 Dec 2009 Spot Mod. Follow. True11MD 2.140 Euribor11M  Wed 18 Feb 2009  Mon 18 Jan 2010 Spot Mod. Follow. True12MD 2.160 Euribor12M  Wed 18 Feb 2009  Thu 18 Feb 2010 Spot Mod. Follow. True
Figure 1. EUR Deposit strip. Source: Reuters page
KLIEM, 16 Feb. 2009.Instrument Quote Underlying Start Date MaturityTod3MF 1.927 Euribor3M  Wed 18 Feb 2009  Mon 18 May 2009Tom3MF 1.925 Euribor3M  Thu 19 Feb 2009  Tue 19 May 20091x4F 1.696 Euribor3M  Wed 18 Mar 2009  Thu 18 Jun 20092x5F 1.651 Euribor3M  Mon 20 Apr 2009  Mon 20 Jul 20093x6F 1.612 Euribor3M  Mon 18 May 2009  Tue 18 Aug 20094x7F 1.580 Euribor3M  Thu 18 Jun 2009  Fri 18 Sep 20095x8F 1.589 Euribor3M  Mon 20 Jul 2009  Tue 20 Oct 20096x9F 1.598 Euribor3M  Tue 18 Aug 2009  Wed 18 Nov 2009Tod6MF 2.013 Euribor6M  Wed 18 Feb 2009  Tue 18 Aug 2009Tom6MF 2.000 Euribor6M  Thu 19 Feb 2009  Wed 19 Aug 20091x7F 1.831 Euribor6M  Wed 18 Mar 2009  Fri 18 Sep 20092x8F 1.792 Euribor6M  Mon 20 Apr 2009  Tue 20 Oct 20093x9F 1.765 Euribor6M  Mon 18 May 2009  Wed 18 Nov 20094x10F 1.742 Euribor6M  Thu 18 Jun 2009  Fri 18 Dec 20095x11F 1.783 Euribor6M  Mon 20 Jul 2009  Wed 20 Jan 20106x12F 1.788 Euribor6M  Tue 18 Aug 2009  Thu 18 Feb 201012x18F 1.959 Euribor6M  Thu 18 Feb 2010  Wed 18 Aug 201018x24F 2.352 Euribor6M  Wed 18 Aug 2010  Fri 18 Feb 201112x24F 2.256 Euribor12M  Thu 18 Feb 2010  Fri 18 Feb 2011IMM1x7F 98.169 Euribor6M  Wed 18 Feb 2009  Tue 18 Aug 2009IMM2x8F 98.204 Euribor6M  Wed 18 Mar 2009  Fri 18 Sep 2009IMM3x9F 98.236 Euribor6M  Wed 15 Apr 2009  Thu 15 Oct 2009IMM4x10F 98.257 Euribor6M  Wed 20 May 2009  Fri 20 Nov 2009
Figure 2. EUR FRA strips on Euribor3M, Euribor6M, and
Euribor12M. Source: Reuters page ICAPSHORT2, 16 Feb.
2009.

5.4. Forward Rate Agreements (FRAs). FRA contacts are forward
starting Deposits. For instance the 3x9 FRA is a six months Deposit starting
three months forward.
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The EUR market quotes standard plain vanilla FRA strips with different
forward start dates (i.e. the start date of the forward Depo), calculated
with the same convention used for the end date of Deposits. So FRAs do
concatenate exactly, e.g. the 6x9 FRA starts when the preceding 3x6 FRA
ends. The underlying forward rate fixes two working days before the forward
start date. In fig. 2 we report the four FRA strips on 3M, 6M, and 12M
Euribor rate quoted in Reuters page ICAPSHORT2.

Market FRAs provide direct empirical evidence that a single curve cannot
be used to estimate forward rates with different tenors. We can observe in
fig. 2 that, for instance, the level of the market 1x4 FRA3M (spanning
from 18th March to 18th June, τF,1x4 = 0.25556) was Fmkt

1x4 = 1.696%, the
level of market 4x7 FRA3M (spanning from 18th June to 18th September,
τF,4x7 = 0.25556) was Fmkt

4x7 = 1.580%. If one would compound these two
rates to obtain the level of the implied 1x7 FRA6M (spanning from 18th
March to 18th September, τF,1x7 = 0.50556) would obtain

F implied
1x7 =

(
1 + Fmkt

1x4 τF,1x4

)× (
1 + Fmkt

4x7 τF,4x7

)− 1.0
τF,1x7

= 1.641%,(20)

while the market quote for the 1x7 FRA6M was Fmkt
1x7 = 1.831%, 19 basis

point larger. As discussed in section 2, the difference is the liquidity/default
risk premium seen by the market in post credit crunch times.

Market FRAs on x-tenor Euribor can be selected, together with the cor-
responding Depos, as bootstrapping instruments for the construction of the
short term structure section of the yield curve Cx. If Fx (t; Ti−1, Ti) is the
i-th Euribor forward rate resetting at time Ti−1 with tenor x = Ti − Ti−1

months associated to the i-th FRA with maturity Ti, the implied discount
factor at time Ti is obtained by eq. (12) as

Px (t0, Ti) =
Px (t0, Ti−1)

1 + Fx (t0; Ti−1, Ti) τF (Ti−1, Ti)
, t0 < Ti−1 < Ti, (21)

where τF is given by eq. (11). The expression (21) above can be used to
bootstrap the yield curve Cx at point Ti once point Ti−1 is known. Notice
that FRAs collapse to Depos for shrinking Ti−1 − t0

lim
Ti−1→t0

Fx (t0; Ti−1, Ti) = RDepo
x (t0, Ti) , (22)

and eq. (21) reduces to eq. (19).

5.5. Futures. Interest Rate Futures are the exchange-traded contracts equiv-
alent to the over-the-counter FRAs. While FRAs have the advantage of being
more customizable, Futures are highly standardized contracts. In the EUR
market the most common contracts (so called IMM 10 Futures) insist on
Euribor3M and expire every March, June, September and December (IMM
dates). They fix the third Wednesday of the maturity month, the last trad-
ing day being the preceding Monday (because of the two days of settlement).

10International Money Market of the Chicago Mercantile Exchange.
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HW parameter Value

Mean reversion 0.03
Volatility 0.709%

Table 1. Hull-White parameters values for Futures3M con-
vexity adjustment at 16 Feb. 2009.

Notice that such date grid is not regular: if Si is the maturity date of the
i-th Futures, then Si and Ti, such that τF (Si, Ti) = 3M , are the underlying
FRA3M start and end dates, respectively, and, in general, Ti 6= Si+1. There
are also so called serial Futures, expiring in the upcoming months not cov-
ered by the quarterly Futures. Any profit and loss is regulated through daily
marking to market (so called margining process).

Such standard characteristics reduce the credit risk and the transaction
costs, thus enhancing a very high liquidity. The first front contract is the
most liquid interest rate instrument, with longer expiry contracts having
very good liquidity up to the 8th-12th contract. Also the first serial contract
is quite liquid, especially when it expires before the front contract.

In fig. 3 we report the quoted Futures strip on 3M Euribor rate up to 3
years maturity. As we can see, Futures are quoted in terms of prices instead
of rates, the relation being

PFut
x (t0, Si, Ti) = 100−RFut

x (t0, Si, Ti) , (23)

Because of their daily marking to market mechanism Futures do not have
the same payoff of FRAs (including an unitary discount factor): an investor
long a Futures contract will have a loss when the Futures price increases
(and the Futures rate decreases) but he will finance such loss at lower rate;
viceversa when the Futures price decreases the profit will be reinvested at
higher rate. This means that the volatility of the forward rates and their
correlation to the spot rates have to be accounted for, hence a convexity
adjustment is needed to convert the rate RFut

x implied in the Futures price
to its corresponding forward rate Fx,

Fx (t0, Si, Ti) = RFut
x (t0, Si, Ti)− Cx (t0, Si, Ti) (24)

(see e.g. ref. [18]). In other words, the trivial unit discount factor implied by
daily margination introduces a pricing measure mismatch with respect to the
corresponding FRA case that generates a volatility-correlation dependent
convexity adjustment (see e.g. ch. 12 in ref. [19]).

The calculation of convexity adjustment thus requires a model for the
evolution of the rates. While advanced approaches are available in literature
(see e.g. refs. [18], [20], [19]), a standard practitioners’ recipe is given in ref.
[21], based on a simple short rate 1 factor Hull & White model [22]. This
approach has been used in fig. 3 to calculate the adjustments, using the
Hull-White parameters values given in table 1.



16 FERDINANDO M. AMETRANO AND MARCO BIANCHETTIInstrument Quote Convexity adjustment Underlying Underlying Start Date Underlying End DateFUT3MG9 98.0675 0.0000% Euribor3M  Wed 18 Feb 2009  Mon 18 May 2009FUT3MH9 98.3075 0.0001% Euribor3M  Wed 18 Mar 2009  Thu 18 Jun 2009FUT3MM9 98.4200 0.0007% Euribor3M  Wed 17 Jun 2009  Thu 17 Sep 2009FUT3MU9 98.3950 0.0016% Euribor3M  Wed 16 Sep 2009  Wed 16 Dec 2009FUT3MZ9 98.2550 0.0028% Euribor3M  Wed 16 Dec 2009  Tue 16 Mar 2010FUT3MH0 98.1625 0.0043% Euribor3M  Wed 17 Mar 2010  Thu 17 Jun 2010FUT3MM0 97.9725 0.0061% Euribor3M  Wed 16 Jun 2010  Thu 16 Sep 2010FUT3MU0 97.7675 0.0081% Euribor3M  Wed 15 Sep 2010  Wed 15 Dec 2010FUT3MZ0 97.5300 0.0104% Euribor3M  Wed 15 Dec 2010  Tue 15 Mar 2011FUT3MH1 97.3475 0.0131% Euribor3M  Wed 16 Mar 2011  Thu 16 Jun 2011FUT3MM1 97.1350 0.0159% Euribor3M  Wed 15 Jun 2011  Thu 15 Sep 2011FUT3MU1 96.9550 0.0193% Euribor3M  Wed 21 Sep 2011  Wed 21 Dec 2011FUT3MZ1 96.7650 0.0227% Euribor3M  Wed 21 Dec 2011  Wed 21 Mar 2012
Figure 3. EUR Futures on Euribor 3M. The first serial
contract (where “G9”stands for Feb. 09 expiry) and three
IMM sets (where “H”, “M”, “U”and “Z”stand for March,
June, September and December expiries, respectively) are
displayed. Source: Reuters page 0#/FEI, 16 Feb. 2009. In
column 3 are reported the corresponding convexity adjust-
ments, calculated as discussed in the text.

Market Futures on x-tenor Euribor can be selected as bootstrapping in-
struments for the construction of short-medium term structure section of the
yield curve Cx. Notice that Futures contracts have expiration dates gradually
shrinking to zero and as such they generate rolling pillars that periodically
jumps and overlap the fixed Depo and FRA pillars. Hence some priority rule
must be used in order to decide which instruments must be excluded from
the bootstrapping procedure.

Given the i-th Futures market quote PFut
x (t0, Si, Ti) with underlying FRA

maturity Ti, the implied discount factor at time Ti is obtained by eqs. (21),
(23) and (24) as

Px (t0, Ti) =
Px (t0, Ti−1)

1 + [RFut
x (t0, Si, Ti)− Cx (t0, Si, Ti)] τF (Si, Ti)

, (25)

where τF is given by eq. (11). The expression above can be used to bootstrap
the yield curve Cx at point Ti once point Si is known.

5.6. Swaps. Interest rate Swaps are Over-The-Counter (OTC) contracts in
which two counterparties agree to exchange fixed against floating rate cash
flows. These payment streams are called fixed and floating leg of the Swap,
respectively.

The EUR market quotes standard plain vanilla Swaps starting at spot
date with annual fixed leg versus floating leg indexed to x-months Euribor
rate payed with x-months frequency. Such Swaps can be regarded as port-
folioS of FRA contracts (the first one being actually a Deposit). The day
count convention for the quoted (fair) swap rates is 30/360 (bond basis) [17].



BOOTSTRAPPING THE ILLIQUIDITY 17Instrument Quote Underlying Start Date MaturityAB6E1Y 1.933 Euribor6M  Wed 18 Feb 2009  Thu 18 Feb 2010AB6E15M 1.858 Euribor6M  Wed 18 Feb 2009  Tue 18 May 2010AB6E18M 1.947 Euribor6M  Wed 18 Feb 2009  Wed 18 Aug 2010AB6E21M 1.954 Euribor6M  Wed 18 Feb 2009  Thu 18 Nov 2010AB6E2Y 2.059 Euribor6M  Wed 18 Feb 2009  Fri 18 Feb 2011AB6E3Y 2.350 Euribor6M  Wed 18 Feb 2009  Mon 20 Feb 2012AB6E4Y 2.604 Euribor6M  Wed 18 Feb 2009  Mon 18 Feb 2013AB6E5Y 2.808 Euribor6M  Wed 18 Feb 2009  Tue 18 Feb 2014AB6E6Y 2.983 Euribor6M  Wed 18 Feb 2009  Wed 18 Feb 2015AB6E7Y 3.136 Euribor6M  Wed 18 Feb 2009  Thu 18 Feb 2016AB6E8Y 3.268 Euribor6M  Wed 18 Feb 2009  Mon 20 Feb 2017AB6E9Y 3.383 Euribor6M  Wed 18 Feb 2009  Mon 19 Feb 2018AB6E10Y 3.488 Euribor6M  Wed 18 Feb 2009  Mon 18 Feb 2019AB6E11Y 3.583 Euribor6M  Wed 18 Feb 2009  Tue 18 Feb 2020AB6E12Y 3.668 Euribor6M  Wed 18 Feb 2009  Thu 18 Feb 2021AB6E13Y 3.738 Euribor6M  Wed 18 Feb 2009  Fri 18 Feb 2022AB6E14Y 3.793 Euribor6M  Wed 18 Feb 2009  Mon 20 Feb 2023AB6E15Y 3.833 Euribor6M  Wed 18 Feb 2009  Mon 19 Feb 2024AB6E16Y 3.861 Euribor6M  Wed 18 Feb 2009  Tue 18 Feb 2025AB6E17Y 3.877 Euribor6M  Wed 18 Feb 2009  Wed 18 Feb 2026AB6E18Y 3.880 Euribor6M  Wed 18 Feb 2009  Thu 18 Feb 2027AB6E19Y 3.872 Euribor6M  Wed 18 Feb 2009  Fri 18 Feb 2028AB6E20Y 3.854 Euribor6M  Wed 18 Feb 2009  Mon 19 Feb 2029AB6E21Y 3.827 Euribor6M  Wed 18 Feb 2009  Mon 18 Feb 2030AB6E22Y 3.792 Euribor6M  Wed 18 Feb 2009  Tue 18 Feb 2031AB6E23Y 3.753 Euribor6M  Wed 18 Feb 2009  Wed 18 Feb 2032AB6E24Y 3.713 Euribor6M  Wed 18 Feb 2009  Fri 18 Feb 2033AB6E25Y 3.672 Euribor6M  Wed 18 Feb 2009  Mon 20 Feb 2034AB6E26Y 3.635 Euribor6M  Wed 18 Feb 2009  Mon 19 Feb 2035AB6E27Y 3.601 Euribor6M  Wed 18 Feb 2009  Mon 18 Feb 2036AB6E28Y 3.569 Euribor6M  Wed 18 Feb 2009  Wed 18 Feb 2037AB6E29Y 3.539 Euribor6M  Wed 18 Feb 2009  Thu 18 Feb 2038AB6E30Y 3.510 Euribor6M  Wed 18 Feb 2009  Fri 18 Feb 2039AB6E35Y 3.377 Euribor6M  Wed 18 Feb 2009  Thu 18 Feb 2044AB6E40Y 3.266 Euribor6M  Wed 18 Feb 2009  Thu 18 Feb 2049AB6E50Y 3.145 Euribor6M  Wed 18 Feb 2009  Tue 18 Feb 2059AB6E60Y 3.076 Euribor6M  Wed 18 Feb 2009  Mon 18 Feb 2069
Figure 4. EUR Swaps on Euribor6M. The codes
“AB6En”in col. 1 label swaps receiving annually a fixed
rate and paying semi-annually a floating rate on Euribor6M
with maturity in n months/years. Source: Reuters page
ICAPEURO, 16 Feb. 2009.

In figures 4, 5 and 6 we report the quoted Swaps strips on 6M, 3M and 1M
Euribor rates, respectively.

Market Swaps on x-tenor Euribor can be selected as bootstrapping instru-
ments for the construction of the medium-long term structure section of the
yield curve Cx. By setting T0 = S0 = t = t0 and Tn = Sm = Ti = Sj in equa-
tion (13) we obtain, for the swap rate Sx (t0, Ti) := Sx (t0; t0, ..., Sj ; t0, ..., Ti)



18 FERDINANDO M. AMETRANO AND MARCO BIANCHETTIInstrument Quote Underlying Start Date Maturity1S1Y 1.668 Euribor3M  Wed 18 Mar 2009  Thu 18 Mar 20102S1Y 1.704 Euribor3M  Wed 17 Jun 2009  Thu 17 Jun 20103S1Y 1.817 Euribor3M  Wed 16 Sep 2009  Thu 16 Sep 20104S1Y 1.975 Euribor3M  Wed 16 Dec 2009  Thu 16 Dec 20101S2Y 1.910 Euribor3M  Wed 18 Mar 2009  Fri 18 Mar 20112S2Y 2.029 Euribor3M  Wed 17 Jun 2009  Fri 17 Jun 20111S3Y 2.256 Euribor3M  Wed 18 Mar 2009  Mon 19 Mar 2012
Figure 5. EUR IMM Swaps on Euribor3M. The codes
“mSnY”in col. 1 label m = Mar., Jun., Sep. and Dec. IMM
starting swaps receiving annually a fixed rate and paying
quarterly a floating rate on Euribor3M with maturity in
n = 1, 2, 3 years. Source: Reuters page ICAPSHORT2, 16
Feb. 2009.Instrument Quote Underlying Start Date Maturity2x1S 1.456 Euribor1M  Wed 18 Feb 2009  Mon 20 Apr 20093x1S 1.406 Euribor1M  Wed 18 Feb 2009  Mon 18 May 20094x1S 1.365 Euribor1M  Wed 18 Feb 2009  Thu 18 Jun 20095x1S 1.337 Euribor1M  Wed 18 Feb 2009  Mon 20 Jul 20096x1S 1.322 Euribor1M  Wed 18 Feb 2009  Tue 18 Aug 20097x1S 1.316 Euribor1M  Wed 18 Feb 2009  Fri 18 Sep 20098x1S 1.315 Euribor1M  Wed 18 Feb 2009  Mon 19 Oct 20099x1S 1.321 Euribor1M  Wed 18 Feb 2009  Wed 18 Nov 200910x1S 1.330 Euribor1M  Wed 18 Feb 2009  Fri 18 Dec 200911x1S 1.347 Euribor1M  Wed 18 Feb 2009  Mon 18 Jan 201012x1S 1.355 Euribor1M  Wed 18 Feb 2009  Thu 18 Feb 2010
Figure 6. EUR Swaps on Euribor1M. The codes “nx1S”in
col. 1 label n-months maturity swaps receiving a single fixed
rate at maturity and paying monthly a floating rate on Eu-
ribor1M. Source: Reuters page ICAPSHORT2, 16 Feb. 2009.

quoted for maturity Ti = Sj ,

Sx (t0, Ti) =

j∑
α=1

Px (t0, Sα) τF (Sα−1, Sα) Fx (t0; Sα−1, Sα)

Ax (t0, Ti)

=

[
j−1∑

α=1

Px (t0, Sα) τF (Sα−1, Sα) Fx (t0; Sα−1, Sα)

+ Px (t0, Sj−1)− Px (t0, Ti)
]

1
Ax (t0, Ti−1) + τS (Ti−1, Ti)Px (t0, Ti)

, (26)

where the last discount factor Px (t0, Ti) has been separated in the second
line, the annuity Ax (.) is given by eq. (14), and τS is given by

τS (T1, T2) := τ [T1, T2; 30/360(bondbasis)] . (27)
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Notice that in eq. 26 above we have not used the telescopic property of the
summation (see the discussion closing section 3). Eq. 26 can be inverted to
find Px (t0, Ti) as

Px (t0, Ti) =

[
j−1∑

α=1

Px (t0, Sα) τF (Sα−1, Sα) Fx (t0; Sα−1, Sα)

+ Px (t0, Sj−1)− Sx (t0, Ti) Ax (t0, Ti−1)
]

1
1 + Sx (t0, Ti) τS (Ti−1, Ti)

. (28)

The expression (28) above can be used, in principle, to bootstrap the yield
curve Cx at point Ti = Sj once the curve points at {T1, ..., Ti−1} and
{S1, ..., Sj−1} are known. In practice, since the fixed leg frequency is an-
nual and the floating leg frequency is given by the underlying Euribor rate
tenor, we have that {T1, ..., Ti} ⊆ {S1, ..., Sj = Ti} for any given fixed leg
date Ti. Hence some points between Px (t0, Ti−1) and Px (t0, Ti) in eq. (28)
may be unknown and one must resort to interpolation and, in general, to
a numerical solution. For example the bootstrap of Euribor6M curve C6M

from 9Y to 10Y knots using the quotation Sx (t0, T10) = 3.488% in fig. 4 is
given by

Px (t0, T10) =

[
19∑

α=1

Px (t0, Sα) τF (Sα−1, Sα) Fx (t0;Sα−1, Sα)

+ Px (t0, S19)− Sx (t0, T10) Ax (t0, T9)
]

1
1 + Sx (t0, T10) τS (T9, T10)

, (29)

where T = {T1, ..., T10}, S = {S1, ..., S20}, T9 = S18 = 9Y, S19 = 9.5Y, T10 =
S20 = 10Y . Since Px (t0, S19) in eq. 29 above is unknown, it must be inter-
polated between Px (t0, T9) (known) and Px (t0, T10) (unknown).

We thus see, as anticipated in the introduction, that interpolation is al-
ready used during the bootstrapping procedure, not only after that.

5.7. Basis Swaps. Interest rate (single currency) Basis Swaps are floating
vs floating swaps admitting underlying rates with different tenors.

The EUR market quotes standard plain vanilla Basis Swaps as portfolios
of two swaps with the same fixed legs and floating legs paying Euribor xM
and yM, e.g. 3M vs 6M, 1M vs 6M, 6M vs 12M, etc. In fig. 7 we report
three quoted Basis Swaps strips. The quotation convention is to provide the
difference (in basis points) between the fixed rate of the higher frequency
swap and the fixed rate of the lower frequency swap. At the moment such
difference is positive and decreasing with maturity, reflecting the preference
of market players for receiving payments with higher frequency (e.g. 3M
instead of 6M, 6M instead of 12M, etc.) and shorter maturities.

Basis swaps are a fundamental element for long term multi-curve boot-
strapping, because, starting from the quoted Swaps on Euribor 6M (fig. 4),
they allow to imply levels for non-quoted Swaps on Euribor 1M, 3M, and



20 FERDINANDO M. AMETRANO AND MARCO BIANCHETTIInstrument Quote (bps) Underlying 1st leg Underlying 2nd leg Start Date Maturity1E6E1Y 55.1 Euribor1M Euribor6M  Wed 18 Feb 2009  Thu 18 Feb 20101E6E2Y 38.7 Euribor1M Euribor6M  Wed 18 Feb 2009  Fri 18 Feb 20111E6E3Y 29.8 Euribor1M Euribor6M  Wed 18 Feb 2009  Mon 20 Feb 20121E6E4Y 24.7 Euribor1M Euribor6M  Wed 18 Feb 2009  Mon 18 Feb 20131E6E5Y 21.1 Euribor1M Euribor6M  Wed 18 Feb 2009  Tue 18 Feb 20141E6E6Y 18.5 Euribor1M Euribor6M  Wed 18 Feb 2009  Wed 18 Feb 20151E6E7Y 16.5 Euribor1M Euribor6M  Wed 18 Feb 2009  Thu 18 Feb 20161E6E8Y 15.0 Euribor1M Euribor6M  Wed 18 Feb 2009  Mon 20 Feb 20171E6E9Y 13.7 Euribor1M Euribor6M  Wed 18 Feb 2009  Mon 19 Feb 20181E6E10Y 12.7 Euribor1M Euribor6M  Wed 18 Feb 2009  Mon 18 Feb 20191E6E11Y 11.9 Euribor1M Euribor6M  Wed 18 Feb 2009  Tue 18 Feb 20201E6E12Y 11.2 Euribor1M Euribor6M  Wed 18 Feb 2009  Thu 18 Feb 20211E6E15Y 9.6 Euribor1M Euribor6M  Wed 18 Feb 2009  Mon 19 Feb 20241E6E20Y 7.9 Euribor1M Euribor6M  Wed 18 Feb 2009  Mon 19 Feb 20291E6E25Y 6.9 Euribor1M Euribor6M  Wed 18 Feb 2009  Mon 20 Feb 20341E6E30Y 6.2 Euribor1M Euribor6M  Wed 18 Feb 2009  Fri 18 Feb 20393E6E1Y 18.6 Euribor3M Euribor6M  Wed 18 Feb 2009  Thu 18 Feb 20103E6E2Y 12.7 Euribor3M Euribor6M  Wed 18 Feb 2009  Fri 18 Feb 20113E6E3Y 9.7 Euribor3M Euribor6M  Wed 18 Feb 2009  Mon 20 Feb 20123E6E4Y 8.0 Euribor3M Euribor6M  Wed 18 Feb 2009  Mon 18 Feb 20133E6E5Y 6.7 Euribor3M Euribor6M  Wed 18 Feb 2009  Tue 18 Feb 20143E6E6Y 5.8 Euribor3M Euribor6M  Wed 18 Feb 2009  Wed 18 Feb 20153E6E7Y 5.1 Euribor3M Euribor6M  Wed 18 Feb 2009  Thu 18 Feb 20163E6E8Y 4.6 Euribor3M Euribor6M  Wed 18 Feb 2009  Mon 20 Feb 20173E6E9Y 4.2 Euribor3M Euribor6M  Wed 18 Feb 2009  Mon 19 Feb 20183E6E10Y 3.8 Euribor3M Euribor6M  Wed 18 Feb 2009  Mon 18 Feb 20193E6E11Y 3.5 Euribor3M Euribor6M  Wed 18 Feb 2009  Tue 18 Feb 20203E6E12Y 3.3 Euribor3M Euribor6M  Wed 18 Feb 2009  Thu 18 Feb 20213E6E15Y 2.8 Euribor3M Euribor6M  Wed 18 Feb 2009  Mon 19 Feb 20243E6E20Y 2.2 Euribor3M Euribor6M  Wed 18 Feb 2009  Mon 19 Feb 20293E6E25Y 2.0 Euribor3M Euribor6M  Wed 18 Feb 2009  Mon 20 Feb 20343E6E30Y 1.8 Euribor3M Euribor6M  Wed 18 Feb 2009  Fri 18 Feb 20396E12E1Y 21.2 Euribor6M Euribor12M  Wed 18 Feb 2009  Thu 18 Feb 20106E12E2Y 15.2 Euribor6M Euribor12M  Wed 18 Feb 2009  Fri 18 Feb 20116E12E3Y 11.7 Euribor6M Euribor12M  Wed 18 Feb 2009  Mon 20 Feb 20126E12E4Y 9.7 Euribor6M Euribor12M  Wed 18 Feb 2009  Mon 18 Feb 20136E12E5Y 8.2 Euribor6M Euribor12M  Wed 18 Feb 2009  Tue 18 Feb 20146E12E6Y 7.2 Euribor6M Euribor12M  Wed 18 Feb 2009  Wed 18 Feb 20156E12E7Y 6.3 Euribor6M Euribor12M  Wed 18 Feb 2009  Thu 18 Feb 20166E12E8Y 5.7 Euribor6M Euribor12M  Wed 18 Feb 2009  Mon 20 Feb 20176E12E9Y 5.1 Euribor6M Euribor12M  Wed 18 Feb 2009  Mon 19 Feb 20186E12E10Y 4.7 Euribor6M Euribor12M  Wed 18 Feb 2009  Mon 18 Feb 20196E12E11Y 4.4 Euribor6M Euribor12M  Wed 18 Feb 2009  Tue 18 Feb 20206E12E12Y 4.1 Euribor6M Euribor12M  Wed 18 Feb 2009  Thu 18 Feb 20216E12E15Y 3.5 Euribor6M Euribor12M  Wed 18 Feb 2009  Mon 19 Feb 20246E12E20Y 2.8 Euribor6M Euribor12M  Wed 18 Feb 2009  Mon 19 Feb 20296E12E25Y 2.5 Euribor6M Euribor12M  Wed 18 Feb 2009  Mon 20 Feb 20346E12E30Y 2.2 Euribor6M Euribor12M  Wed 18 Feb 2009  Fri 18 Feb 2039
Figure 7. EUR Basis Swaps. The codes “xEyEnY”in col. 1
label basis swaps receiving Euribor xM and paying Euribor
yM plus basis spread with n years maturity. Source: Reuters
page ICAPEUROBASIS, 16 Feb. 2009.
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Figure 8. EUR Basis spreads from fig. 7. The spreads not
explicitly quoted there have been deduced using eq. (30).

12M, to be selected as bootstrapping instruments for the corresponding yield
curves construction. If ∆x,6M (t0, Ti) is the quoted basis spread for a basis
swap receiving Euribor xM and paying Euribor 6M plus spread for maturity
Ti, we simply have

Sx (t0, Ti) = S6M (t0, Ti) + ∆x,6M (t0, Ti) , (30)

with the obvious caveat that ∆6M,x (t0, Ti) = −∆x,6M (t0, Ti). In fig. 8 we
report all the possible basis combinations obtained from fig. 7. Notice that
basis swaps in fig. 7 are quoted up to 30 years, while swaps on Euribor6M
in fig. 4 are quoted up to 60 years. Thus the bootstrapping of yield curves
different from C6M over 30 years maturity requires extrapolation of basis
swap quotations. In the present market conditions, such extrapolation is
not particularly critical, given the smooth and monotonic long term shape
of the basis curves in fig. 7.

5.8. The Role of Interpolation. The interpolation scheme we choose for
the given parametrization determines how reasonable the yield curve will
be. For instance, linear interpolation of discount factors is an obvious but
extremely poor choice. Linear interpolation of zero rates or log-discounts
are popular choices leading to stable and fast bootstrapping procedures,
but unfortunately they produce horrible forward curves, with a sagsaw or
piecewise-constant shape (see e.g. [5], [6] for a review of available interpo-
lation schemes). We show in fig. 9 one examples of such poor interpolation
schemes. While zero curves (upper panel) display similar smooth behaviors,
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simple visual inspection of forward curves (lower panel) reveals different
non-smooth behaviors, with oscillations larger than 100 basis points. Such
discontinuities in the forward curves correspond to angle points in the zero
curves (as pointed out in section 3), generated by linear interpolation that
forces them to suddenly “turn”around a market point. Notice that only
the most liquid Swaps from fig. 4, with maturities 3-10, 12, 15, 20, 25 and
30 years have been included in the bootstrapping of curve C6M . Often the
remaining less liquid quotations for 11, 13, 14, 16-19, 21-24, 26-29 years
maturity are included in the linear interpolations schemes to reduce the am-
plitude of the forward curve oscillations. The same can be done for longer
maturities using interpolated quotes on the 30, 40, 50 and 60 years market
pillars.

In fig. 9 the monotonic cubic spline interpolation on log-discounts is shown
too, clearly ensuring a smooth and financially sound behavior of the forward
curve. The choice of cubic interpolations is a very delicate issue. Simple
splines (see e.g. [24]) suffer of well-documented problems such as spuri-
ous inflection points, excessive convexity, and lack of locality after input
price perturbations (distributed sensitivities). Recently, Andersen [11] has
addressed these issues through the use of shape-preserving splines from the
class of generalized tension splines, while Hagan and West [5]-[6] have de-
veloped a new scheme based on positive preserving forward interpolation.
We found the classic Hyman monotonic cubic filter [23] applied to spline
interpolation of log-discounts to be the easiest and best approach: its mono-
tonicity ensures non-negative forward curves and actually remove most of
the unpleasant waviness. Notice that the Hyman filter can be applied to
any cubic interpolants: this helps to address the non-locality of spline using
alternative more local cubic interpolations. In fig. 10 we show an example
of particularly nasty curve taken from Hagan and West [5] (p. 98 and fig.
2, bottom right panel). The forward curve obtained through Hyman mono-
tonic cubic spline [23] applied on log discounts (lower panel) is always non
negative (there is a unique minimum at 20Y).

A peculiarity of using non-local interpolation inside the bootstrapping
procedure is that the shape of the already bootstrapped part of the curve
is altered by the addition of further pillars. This is usually remedied by
cycling in iterative fashion: after a first bootstrap, which might even use a
local interpolation scheme and build up the pillar grid one point at time,
the resulting complete grid is altered one pillar at time using again the same
bootstrapping algorithm, until convergence is reached. The first cycle can
be even replaced by a good grid guess, the most natural one being just the
grid previous state in a dynamically changing environment.

We stress that the focus on smooth discrete forward rate is the key point
of state-of-the-art bootstrapping. For even the best interpolation schemes to
be effective the forward rate curve must be smooth, i.e. any jump must be
removed, and added back only at the end of the smooth curve construction.
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Figure 9. Examples of bad (but very popular!) interpola-
tion schemes. Upper panel: different zero curves display sim-
ilar smooth behaviors. Lower panel: forward curves reveals
different non-smooth behaviors, with oscillations larger than
100 basis points. The smooth monotonic cubic spline inter-
polation on log-discounts (continuous black line) of fig. 15 is
shown as a benchmark.

The most relevant jump in forward rates is the so-called turn of year effect,
discussed in the next section.

5.9. The Turn of Year Effect. In the interest rate market the turn of year
effect is a jump normally observed in market quotations of rates spanning



24 FERDINANDO M. AMETRANO AND MARCO BIANCHETTITerm Zero rate Capitalization factor Discount factor Log Discount factor Discrete forward FRA0.0 0.00% 1.000000 1.000000 0.0000000.1 8.10% 1.008133 0.991933 0.008100 8.1000% 8.1329%1.0 7.00% 1.072508 0.932394 0.070000 6.8778% 7.0951%4.0 4.40% 1.192438 0.838618 0.176000 3.5333% 3.7274%9.0 7.00% 1.877611 0.532592 0.630000 9.0800% 11.4920%20.0 4.00% 2.225541 0.449329 0.800000 1.5455% 1.6846%30.0 3.00% 2.459603 0.406570 0.900000 1.0000% 1.0517%

-2%

0%

2%

4%

6%

8%

10%

12%

0 5 10 15 20 25 30

Term (Y)

F
o

rw
ar

d
 r

at
es

 (
%

)

Figure 10. Example of nasty curve taken from ref. [5] (p.
98 and fig. 2, bottom right panel). Upper panel: the exam-
ple curve. Lower panel: the forward curve obtained through
Hyman monotonic cubic spline [23] applied on log-discounts.
The forward rate at 20Y is null but no negative rates appear.

across the end of a year. In fig. 11 we display the historical series of Euri-
bor1M in the window October 2007 - February 2009. The 2007 turn of year
jump (64 bps) is clearly visible on 29th Nov. 2007 (left rectangle), just when
the spot starting 1M tenor rate spans the end of 2007, with rates reverting
toward the previous levels one month later. The 2008 turn of year jump on
27th Nov. 2008 (22 bps, right oval) is partially hidden by the high market
volatility realized in that period. Viceversa in lower volatility regimes even
the much smaller “end of semester effect”may be observable, as seen on 29th
of May 2008 (9 bps, middle rhombus).

In the EUR market the larger jump is observed the last working day of
the year (e.g. 31th December) for the Overnight Deposit maturing the first
working day of the next year (e.g. 2nd January). The same happens for the
Tomorrow Next and Spot Next Deposits one and two business days before,
respectively (e.g. 30th and 29th December). Other instruments with longer
underlying rate tenors display smaller jumps when their maturity crosses the
same border: for instance, the 1M Deposit quotation jumps 2 business days
before the 1st business day of December; the 12M Deposits always include



BOOTSTRAPPING THE ILLIQUIDITY 25

a jump except 2 business days before the end of the year (due to the end
of month rule); the December IMM Futures always include a jump, as well
as the October and November serial Futures; 2Y Swaps always include two
jumps; etc. The effect is generally observable at the first two ends of year
and becomes negligible at the following crosses.

The decreasing jump with increasing underlying rate tenor can be easily
understood once we distinguish between jumping rates and non-jumping
rates. For instance, we may think to the 1M Deposit as a weighted average
of 22 (business days in one month) overnight rates (plus a basis). If such Depo
spans an end of year, there must be a single overnight rate, weighting 1/22th,
that crosses that end of year and displays the jump, while the others do not.
Considering rates with longer tenors, there are still single jumping overnight
rates, but with smaller weights. Hence longer deposits/FRAs display smaller
jumps. The same holds for Swaps, as portfolios of Depos/FRAs.

From a financial point of view, the turn of year effect is due to the in-
creased search for liquidity by financial institutions just after the periodic
balance sheet strikes.

An yield curve term structure up to N years including the turn of year
effect should contain, in principle, N discontinuities; in practice essentially
the end of the current and the next year can be taken into account. The
effect can be modeled simply through a multiplicative coefficient applied
to discount factors, or, equivalently, an additive coefficient applied to zero
rates, corresponding to all the dates following a given end of year. In this
way we are allowed to estimate the coefficient using instruments with a given
underlying rate tenor (e.g. those on Euribor3M used for C3M ), and to apply
it to any other curve Cx taking into account the proper weights. Notice that,
as stressed in the previous section, starting from a smooth and continuous
yield curve is crucial for correctly take into account the discontinuity at the
turn of year.

The jump coefficient can be estimated from market quotations using dif-
ferent approaches:

• jump in the 3M Futures strip: the (no-jump) end of year crossing
forward is obtained through interpolation of non-crossing forwards;
the jump coefficient is given by the difference between the latter
and the quoted value. This approach always allows the estimation of
the second turn of year. The first turn of year can be obtained only
up to the third Wednesday of September, when the corresponding
Futures expiries. In the period October-December there are no non-
crossing Futures to interpolate and the first turn of year should be
extrapolated from the second, making the method not robust;

• jump in the 6M FRA strip: this is equivalent to the approach above
but it allows the estimation of the first turn of year up to June
(included);
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Figure 11. Turn of year effect on Euribor1M. The historical
time series in the Oct. 2007 - Feb 2009 window is displayed.
Three jumps can be identified: the 2007 turn of year (29th
Nov. 2007, 64 bps, left rectangle); the 2008 turn of year (27th
Nov. 2008, 22 bps, right oval); a smaller “end of semester
effect”(29th May 2008, 9 bps, middle rhombus). Source:
Reuters.

• jump in the 1M Swaps strip: this is equivalent to the approaches
above and it allows the estimation of the first turn of year up to
November (included);

• jump in the FRA strip quoted by brokers each Monday: this ap-
proach is valid all year long, but it allows only a discontinuous weekly
update.

The empirical approaches above, when available at the same time, give es-
timates in excellent agreement with each other.

A numerical example of application of the methodology discussed above
is given in fig. 12 (a detail from upper panel of fig. 13 reported in section 6),
where we display the bootstrapping of the forward and zero rate curves Cf

1M
and Cz

1M on Euribor1M. The 2009 turn of year jump is clearly observable
in Cf

1M from 27th Nov. 2009 (+7.5 bps) to 30th Dec. 2009 (-8.6 bps) for
Euribor1M rates spot starting on 1st Dec. 2009 and terminating on 4th
Dec. 2010. Also the 2010 turn of year jump is observable in Cf

1M from 29th
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Figure 12. Detail from fig. 13, upper panel, showing the
turn of year effect included in the short term bootstrap-
ping of the forward rate curve Cf

1M (blue line). The 2009
and 2010 turn of year jumps are clearly observable (left and
right dashed rectangles, respectively). The same jumps are
also present in the zero rate curve Cz

1M (red line), but less
visible because of the scale (see discussion in the text).

Nov. 2010 (+9.3 bps) to 30th Dec. 2010 (-8.6 bps) for rates spot starting on
1st Dec. 2010 and terminating on 3rd Dec. 2011. The jumps are present also
in the zero rate curve Cz

1M , but they are less observable because of the scale
in fig. 12. We stress that a single turn of the year induces one discontinuity
in the zero rate and discount curves, and two discontinuities in the forward
rate curve (remember that the forward rate is given by the ratio of two
discounts).

The yield curve discontinuities induced by the turn of year effect may
appear, to a non market-driven reader, a fuzzy effect broking the desired
yield curve smoothness. On the contrary, we stress that they are neither
a strangeness of the market quotations nor an accident of the bootstrap-
ping, but correspond to true and detectable financial effects that should be
included in any yield curve used to mark to market interest rate derivatives.

6. Implementation and Examples of Bootstrapping

Given the methodology discussed in the previous sections, we are able to
bootstrap four yield curves C1M , C3M , C6M , C12M on Euribor 1M, 3M, 6M
and 12M, respectively. In the four figures 13, 14, 15 and 16 below we show
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an example of bootstrapping using our personal selection of the market
data discussed in sections 5.3-5.7. Only the forward curves are displayed,
being the most significative bootstrapping test as discussed in section 5.8.
The scales are the same across all figures, allowing a general comparison.
The maximum maturity reported is 30 years, according to the basis swaps
quotations (see fig. 7). As discussed in section 5.7, while for the C6M curve
swaps market data are available up to 60 years (see fig. 4), the bootstrapping
of other curves over 30 years maturity would require extrapolation of basis
swap quotations (see figures 7 and 8).

The results discussed in this paper have been obtained using the QuantLib
framework11. The basic classes and methods (iterative bootstrapping, inter-
polations, market conventions, etc.) are implemented in the object oriented
C++ QuantLib library [25]. The QuantLib objects and analytics are ex-
posed to a variety of end-user platforms (including Excel and Calc) through
the QuantLibAddin [26] and QuantLibXL [27] libraries. Market data are
retrieved from the chosen provider and real time is ensured by the Objec-
tHandler in-memory repository [28]. The full framework described above is
available open source. Anyone interested in the topic may download and
test the implementation, posting to the QuantLib community forum any
comment or suggestion to improve the job.

7. Conclusions

We have illustrated a methodology for bootstrapping multiple interest
rate yield curves, each homogeneous in the underlying rate tenor, from non-
homogeneous plain vanilla instruments quoted on the market.

Results for the concrete EUR market case have been analyzed in detail,
showing how real quotations for interest rate instruments on Euribor1M,
3M, 6M and 12M tenor can be used in practice to construct stable, robust
and smooth yield curves for pricing and hedging interest rate derivatives.

The full implementation of the work, comprehensive of C++ code and
Excel workbooks, is available open source.

11precisely, revision 15931 in the QuantLib SVN repository.
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EUR Yield Curve 1M: 0-30 Y
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Figure 13. Forward curve Cf
1M on Euribor1M at

16 Feb. 2009, plotted with 1M-tenor forward rates
F (t0; t, t + 1M, act/360 ), t daily sampled and spot date
t0 = Feb. 18th, 2009. Upper panel: short term structure up
to 3 years; lower panel: whole term structure up to 30 years.
The two jumps observed in the curve correspond to the two
turn of years for 1M tenor forward rates spot starting at 1st
Dec. 2009 and 1st Dec. 2010.

.



30 FERDINANDO M. AMETRANO AND MARCO BIANCHETTI

EUR Yield Curve 3M: 0-3 Y
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Figure 14. Forward curve Cf
3M on Euribor3M at 16 Feb.

2009. Plots as in fig. 13. Quoted 3M FRAs and 3M Futures
are also reported.

.
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Figure 15. Forward curve Cf
6M on Euribor6M at 16 Feb.

2009. Plots as in fig. 13. Quoted 6M FRAs and 6M IMM
FRAs are also reported.
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EUR Yield Curve 12M: 0-3 Y
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Figure 16. Forward curve Cf
12M on Euribor12M at 16 Feb.

2009. Plots as in fig. 13. Quoted 12M FRAs are also reported.
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